If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-32=0
a = 4; b = 2; c = -32;
Δ = b2-4ac
Δ = 22-4·4·(-32)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{129}}{2*4}=\frac{-2-2\sqrt{129}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{129}}{2*4}=\frac{-2+2\sqrt{129}}{8} $
| 60=-4(-3n-3) | | 38-38(.20)=x | | 42=18t+4(t/5) | | 0.2(a+12)=0.4 | | x/5+x/5=8 | | 3(t-2)+5t=4(2t+5)-8 | | 9x-4=6x+12 | | 2d-6=1/4d+1 | | 9(5x-6)=39 | | -2(x+3)+3x=-1 | | x^2+4=64 | | x^2-110x+240=0 | | 2/1r−3=3(4−2/3r) | | 28-3x=12+5x | | 8^6=4^x | | 8n/5−1/5=7/5 | | -11x-20=-10+35 | | 48=2/5x-7 | | 16-16(.15)=x | | (10+10x)+5=-125 | | 4n/5+3/5=6/5 | | 3x+2(2x+1)=50 | | 26/8-x=2/4+x | | -5(x+2)+x=x+5(3-2x) | | 2y+5+5•26-17=180 | | -34-4x=-5-5(1+5x) | | 23x-x^2=130 | | P-5=-11+3p | | 5.2(4-(11-(3x+5))+6)=-18.6 | | 1=0.1x-0.8x-34 | | 2÷3(3k+4)=10 | | 1d/2-8=3 |